

About Cerebry

Cerebry is a comprehensive post-class practice and assessment solution for STEM subjects that caters to various curriculums across the world. The platform has been widely adopted in schools in the United States, United Arab Emirates, India, Philippines, Singapore, and Indonesia. Whether U.S. Common Core, IGCSE, CBSE, DEPED, or GCE O-Level, Cerebry's Al aligns with any curriculum by first shaping the engine around the content provided, then creating a rich variety of problem sets through the AI's question generation capabilities. Cerebry's AI can also be customised to various teaching styles and even include the creation of dynamic images and graphs.

Proctice Level () Proctice Level Ninja

metres

Level D

Enhance student engagement and performance

in various subjects across all grade levels.

Implement strategies for more personalised and

effective test preparation services for students.

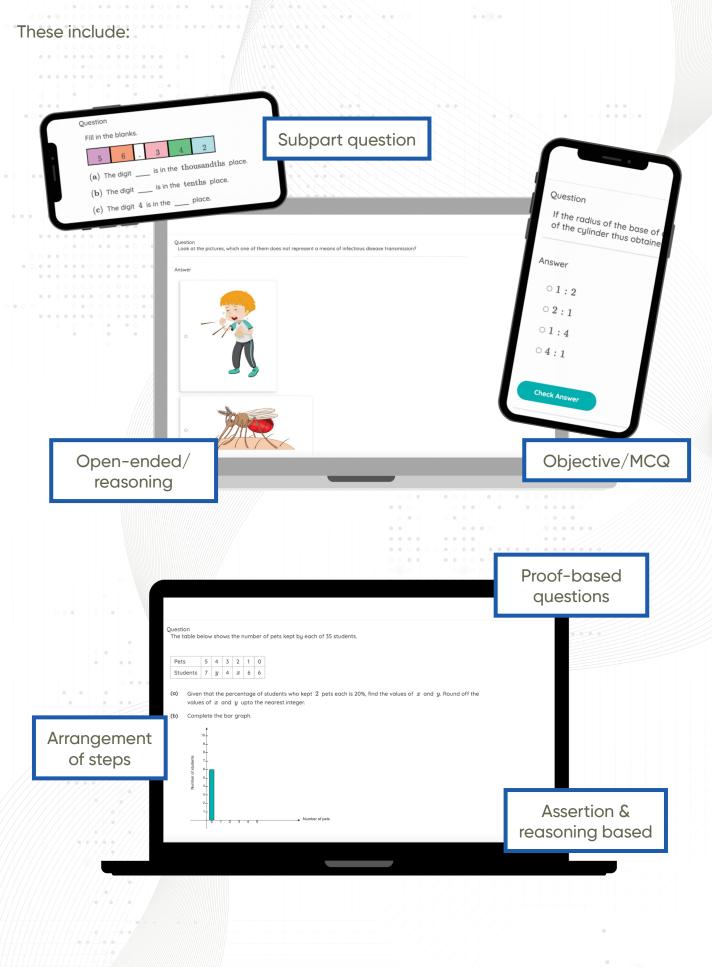
Optimise the learning experience

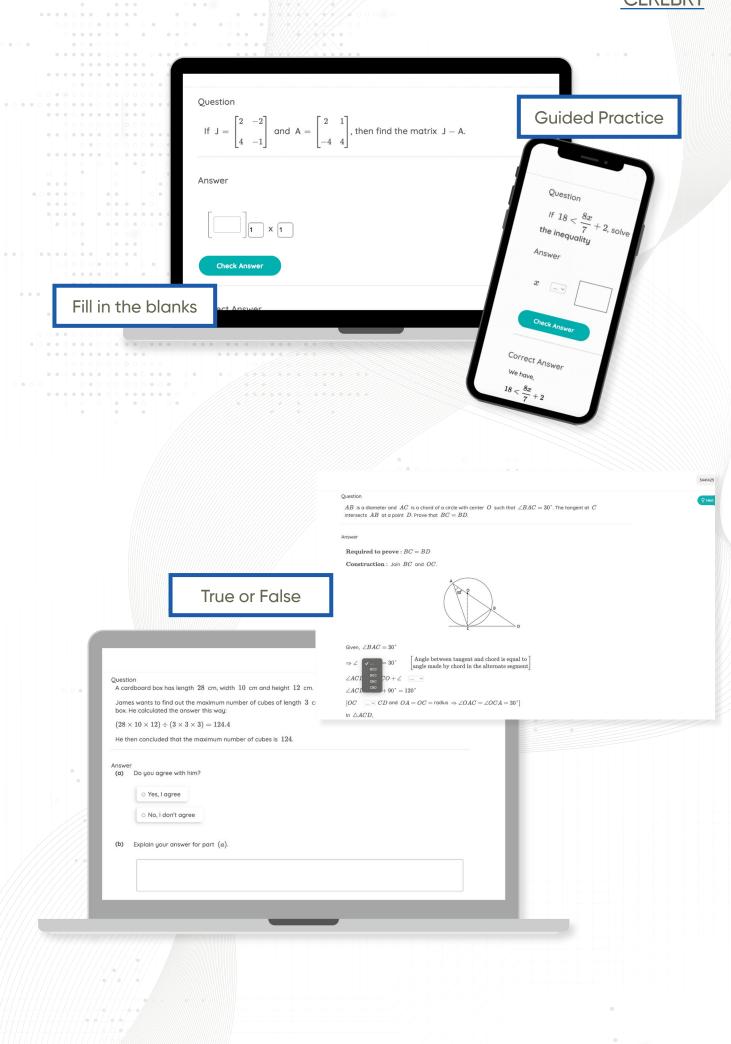
for a diverse student base.

Question Expand ^ Step Bu Step

> Great It's Correct! Your problem solving is str Proceed to the next step

Solve the fractional equation involving radicals


BD = (H + 18)


Solution Skills

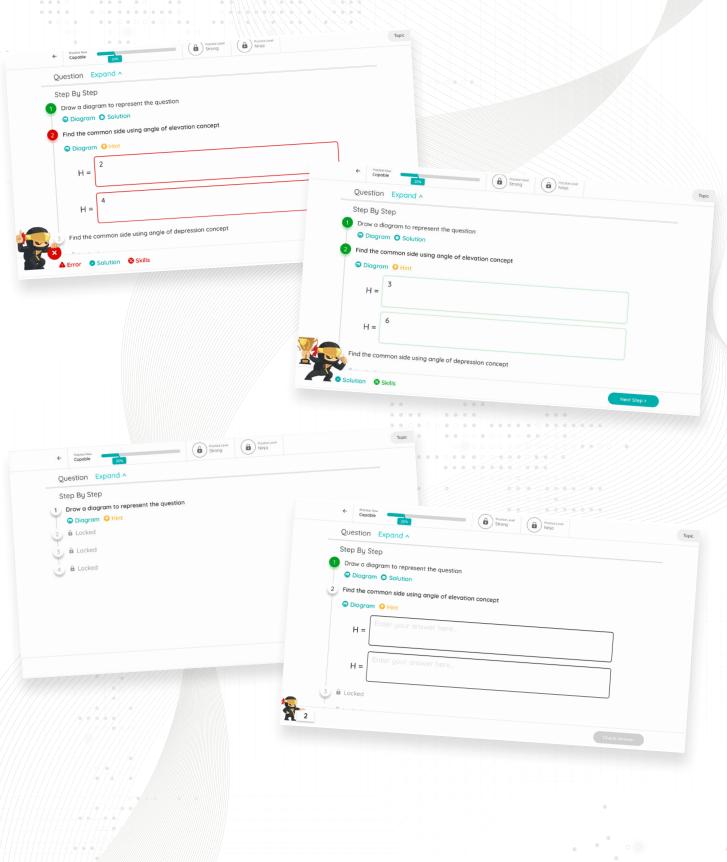
Draw a diagram to represent the question 🧿 Solutio

Find the common side using angle of elevation concept O Solution
Find the common side using angle of depression concept O Diagram O Hint

Maximise student engagement across a breadth of subjects on Cerebry, from Science and Maths, to History, Geography, and English! Cerebry offers a wide array of question types, ensuring students receive comprehensive mastery, even in nuanced areas.

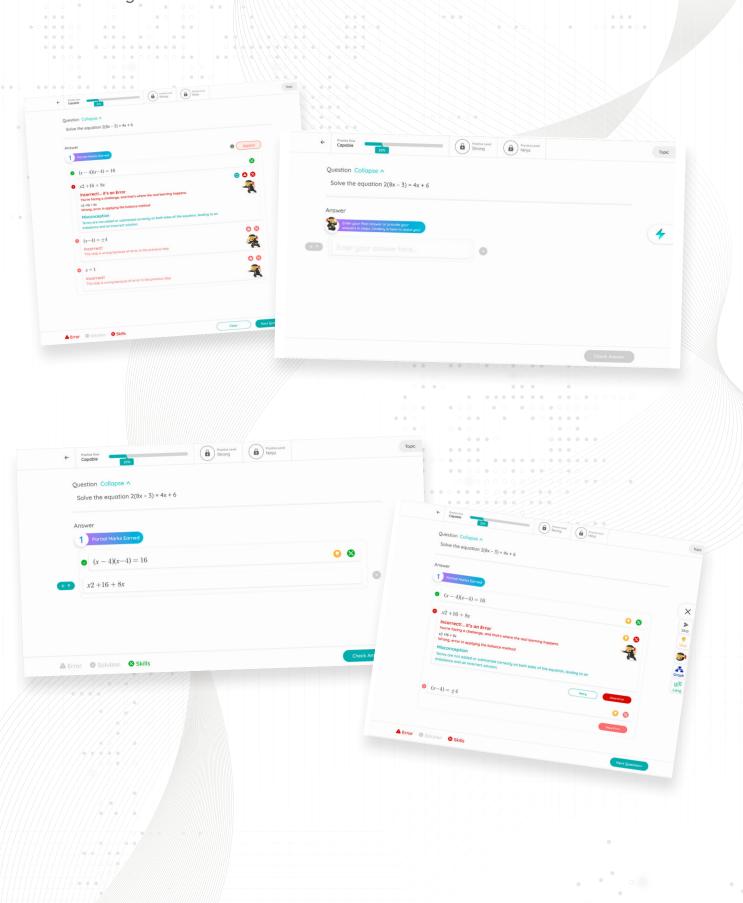
Generates differentiated problems to suit every learners' needs Instantly breaks complex problems into steps for clearer understanding Step-by-step auto-grading Why make Cerebry your go-to Teaching **Resolves** learners' **Assistant?** doubts in real-time Offers dynamic constructive feedback and guided self-reflection

Transforms learning into an exciting team adventure


Generate differentiated problems to suit every learner's needs

Cerebry focuses on tailoring learning through one unique question at a time. Cerebry's Al generates unlimited problem variations to ensure personalised questions for each student, offering flexibility in their learning as well as preventing plagiarism. Educators have the option to either generate detailed step-by-step solutions or to train the Al to learn tricks. Discover the effectiveness of Al in scaffolding questions to promote procedural understanding with Cerebry.

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$											
Called Lold A to react a stand of the probability of the control											
Called Loads A To the set that a state of the set of t											
be called a constraint of the call of the				Easy 100% / Medium 100% / Har	d 100%						
Second Overview Question Practical Currently Solving $\begin{array}{c} \bullet \operatorname{Atterpt} 1 & \bullet \operatorname{Atterpt} 2 & \bullet \bullet \\ \bullet \operatorname{Atterpt} 2 & \bullet \operatorname{Atterpt} 2 & \bullet \\ \bullet \operatorname{Atterpt} 3 & \bullet \operatorname{Atterpt} 2 & \bullet \\ \bullet \operatorname{Atterpt} 4 & \bullet \operatorname{Atterpt} 2 & \bullet \\ \bullet \operatorname{Atterpt} 4 & \bullet \operatorname{Atterpt} 2 & \bullet \\ \bullet \operatorname{Atterpt} 4 & \bullet \operatorname{Atterpt} 2 & \bullet \\ \bullet \operatorname{Atterpt} 4 & \bullet \operatorname{Atterpt} 2 & \bullet \\ \bullet \operatorname{Atterpt} 4 & \bullet \operatorname{Atterpt} 2 & \bullet \\ \bullet \operatorname{Atterpt} 2 & \bullet \operatorname{Atterpt} 2 & \bullet \\ \bullet \operatorname{Atterpt} 2 & \bullet \operatorname{Atterpt} 2 & \bullet \\ \bullet \operatorname{Atterpt} 2 & \bullet \operatorname{Atterpt} 2 & \bullet \\ \bullet \operatorname{Atterpt} 2 & \bullet \operatorname{Atterpt} 2 & \bullet \\ \bullet \operatorname{Atterpt} 2 & \bullet \operatorname{Atterpt} 2 & \bullet \\ \bullet \operatorname{Atterpt} 2 & \bullet \operatorname{Atterpt} 2 & \bullet \\ \bullet \operatorname{Atterpt} 2 & \bullet \operatorname{Atterpt} 2 & \bullet \\ \bullet$	Guinto Eouis / II										
$ \begin{array}{c} \bullet \operatorname{Aterpt} 1 & \bullet \operatorname{Aterpt} 2 & \bullet \end{array} \\ \hline \bullet \operatorname{Aterpt} 1 & \bullet \operatorname{Aterpt} 2 & \bullet \end{array} \\ \hline \bullet \operatorname{Aterpt} 1 & \bullet \operatorname{Aterpt} 2 & \bullet \end{array} \\ \hline \bullet \operatorname{Aterpt} 1 & \bullet \operatorname{Aterpt} 2 & \bullet \\ \bullet \operatorname{Aterpt} 2 & \bullet \operatorname{Aterpt} 2 & \bullet \\ \bullet \operatorname{Aterpt} 2 & \bullet \operatorname{Aterpt} 2 & \bullet \\ \bullet \operatorname{Aterpt} 2 & \bullet \operatorname{Aterpt} 2 & \bullet \\ \bullet \operatorname{Aterpt} 2 & \bullet \operatorname{Aterpt} 2 & \bullet \\ \bullet \\ \bullet \operatorname{Aterpt} 2 & \bullet \\ \bullet$											
$ \begin{array}{c} \label{eq:constraint} & \label{eq:constraint} \\ \hline \end{tabular} \\ \end$	Cassian Quantinut Qu	unation Department									
$ \begin{aligned} \text{Current} & $		Currently solving									
$\label{eq:set} \begin{aligned} \mathbf{v}_{cut cut cut cut cut cut cut cut cut cut $											
$\label{eq:second} \begin{split} \mbox{Product} \mbox{Product}$	Attempt 1	Attempt 2 $\leftarrow \rightarrow$									
$\label{eq:second} \begin{split} \mbox{Product} \mbox{Product}$	_										
$\begin{aligned} \operatorname{Curcet Answert} \\ & \left(\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) - \frac{1}{2} \left(\frac{1}{2} - $	Question v										
$\begin{aligned} & \left(4a^{2}y - y \right) = \left(4a^{2}y - y \right) \\ & = y(4x^{2})^{2} - 1^{2} \left(x^{2} - b^{2} - (a - b)(a^{2} + ab + b^{2}) \right) \\ & = y(4x - 1)(4x^{2} + 4x + 1) \end{aligned}$ Solution Answer $y(4x - 1)(4x^{2} + 4x + 1)$ Frize Addian Q. Exercise The transformation of Phagement und Category of Inductions	Factorise $64x^3y - y$.										
$\begin{aligned} & \left(4a^{2}y - y \right) = \left(4a^{2}y - y \right) \\ & = y(4x^{2})^{2} - 1^{2} \left(x^{2} - b^{2} - (a - b)(a^{2} + ab + b^{2}) \right) \\ & = y(4x - 1)(4x^{2} + 4x + 1) \end{aligned}$ Solution Answer $y(4x - 1)(4x^{2} + 4x + 1)$ Frize Addian Q. Exercise The transformation of Phagement und Category of Inductions											
$= y((4x)^{1} - 1)^{1} (1x^{2} + 4x + 1)$ Solution Accounts $y(4x - 1)(1x^{2} + 4x + 1)$ Find Action 0. Explore y leads $y(4x$											
$= y(x - 1)((x)^{2} + 4x + 1)$ Submitted Answer $y(4x - 1)(16x^{2} + 4x + 1)$ $fnro Adrian Q. \qquad to yith y (both million of hypersection of hy$											
Sumited haves $f(t-1)(16^2 + 4 + 1)$ Exc. Advin 0. to you with the Practiced for the											
$f(tr-1)(16t^2 + tr+1)$ Enco Adrian O. Expression of Physical Advances	= y(4x - 1)	$1)((4x)^{-} + 4x + 1)$			• • •						
Encoder of Poisson of	Submitted Answer				-						
Enza Adrian 0. Exp 10% / Media 10% / Medi					• • • • • • • • • • • • • • • • • • • •						
Enza Adrian 0. Exp 10% / Media 10% / Medi	$(4x-1)(16x^2+4x)$	+1)									
Exa Adrian Constrained of Polyacoma advisor of Pol											
Exo Adrian O. (because of Polynomial what Carried Solving Currently Solving $x^2y - 8y$. Current Answer $x^2y - 8y - x^2y - 2^2y$ $= y(x^2 - 2^2) \ (: x^3 - b^2 = (a - b)(a^2 + ab + b^2)]$ $= y(x - 2)(x^2 + 2x + 4)$ Submitted Answer $y(x - 2)(x^2 + 2x + 4)$											
Curs: colls Curs: colls Cursently Solving Cursently Solving Curse			• • •								
Session Overview Question Practiced Currently Solving $\begin{array}{c} \bullet \text{ Attempt 1} \\ \bullet \text{ Attempt 2} \\ \bullet \bullet \\ \hline \\$		Enzo Adrian O.			Easy 100% / Medium 100% / Hard						
Session Overview Question Practiced Currently Solving $\begin{array}{c} \bullet \text{ Attempt 1} \\ \bullet \text{ Attempt 2} \\ \bullet \bullet \\ \hline \\$		Class : Callins		Factor	ing 1 Eactorization of Polynomial with Co						
Session Overview Question Practiced Currently Solving $\begin{array}{c} \hline \\ \hline $											
$ \begin{array}{c} Atternpt 1 \qquad Atternpt 2 \qquad \longleftrightarrow \end{gathered} \\ \hline \\ Question v \\ \\ Factorise x^3y - 8y. \\ \hline \\ Correct Answer v \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		Session Overview Question Practiced	Currently Solving								
• Attempt 1 • Attempt 2 $\leftarrow \Rightarrow$ Question v Factorise $x^3y - 8y$. Correct Answer v $x^3y - 8y = x^3y - 2^3y$ $= y(x^2 - 2^3)$ [: $x^3 - b^3 = (a - b)(a^2 + ab + b^3)$] $= y(x - 2)(x^2 + 2x + 4)$ Submitted Answer $y(x - 2)(x^2 + 2x + 4)$											
Question v Foctorise $x^3y - 8y$. Correct Answer v $x^3y - 8y = x^3y - 2^3y$ $= y(x^2 - 2^3) [: x^3 - b^3 = (a - b)(a^2 + ab + b^2)]$ $= y(x - 2)(x^2 + 2x + 4)$ Submitted Answer $y(x - 2)(x^2 + 2x + 4)$		Attempt 1 Attempt 2	$\leftarrow \rightarrow$								
Question v Factorise $x^3y - 8y$. Correct Answer v $x^3y - 8y = x^3y - 2^3y$ $= y(x^3 - 2^3) [: \cdot a^3 - b^3 = (a - b)(a^2 + ab + b^2)]$ $= y(x - 2)(x^2 + 2x + 4)$ Submitted Answer $y(x - 2)(x^2 + 2x + 4)$											
Factorise $x^{3}y - 8y$. Correct Answer v $x^{3}y - 8y = x^{3}y - 2^{3}y$ $= y(x^{3} - 2^{3}) [: a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})]$ $= y(x - 2)(x^{2} + 2x + 4)$ Submitted Answer $y(x - 2)(x^{2} + 2x + 4)$											
Correct Answer v $x^{3}y - 8y = x^{3}y - 2^{3}y$ $= y(x^{3} - 2^{3}) [: a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})]$ $= y(x - 2)(x^{2} + 2x + 4)$ Submitted Answer $y(x - 2)(x^{2} + 2x + 4)$		Factorise $x^3y - 8y$.									
$x^{3}y - 8y = x^{3}y - 2^{3}y$ = $y(x^{3} - 2^{3}) [: a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})]$ = $y(x - 2)(x^{2} + 2x + 4)$ Submitted Answer $y(x - 2)(x^{2} + 2x + 4)$											
$= g(x^{3} - 2^{3}) [: a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})]$ $= g(x - 2)(x^{2} + 2x + 4)$ Submitted Answer $y(x - 2)(x^{2} + 2x + 4)$											
$= y(x-2)(x^{2}+2x+4)$ Submitted Answer $y(x-2)(x^{2}+2x+4)$											
Submitted Answer $y(x-2)(x^2+2x+4)$			$(a^2+ab+b^2)]$								
Submitted Answer $y(x-2)(x^2+2x+4)$		$= y(x-2)(x^2+2x+4)$									
$y(x-2)(x^2+2x+4)$		Submitted Answer									
$y(x-2)(x^2+2x+4)$											
	///////////////////////////////////////	$v(x-2)(x^2+2x+4)$									
					•						


Instantly breaks complex problems into steps for clearer understanding

Step-by-step question breakdowns are sets of Al-generated guided instructions that provide a clear and organised approach to solving complex problems, enhancing students' understanding of underlying concepts. Students need to unlock each step and navigate through problem-solving processes.

Step-by-step auto grading

Cerebry's Al grades students' step-by-step workings and provides scaffolded instructional nudges when students are unsure of how to answer. Additionally, it detects and flags errors in their workings.

Resolve learners' doubts in real-time

Cerebot is Cerebry's own real-time AI tutor for clearing up any doubts students might have. Students can raise any challenges or problems they face when completing assignments with Cerebot and receive immediate feedback to resolve their issues. With the ability to work with images, graphs, and more, this Cerebry AI tutor is the perfect, round-the-clock teaching assistant for time-constrained educators.

📕 Cerebot - Your Tutor

Hi, I'm having trouble with a quadratic equation problem. The equation is $2x^2 + 5x + 3 = 0$. Can you help me solve it?

Of course, I'd be happy to help you solve the quadratic equation problem. Let's start by looking at the standard form of a quadratic equation, which is $ax^2 + bx + c = 0$. In your case, the equation is $2x^2 + 5x + 3 = 0$. Can you identify the values of a, b, and c in this equation?

Yes, a =, b = 5 and c = 3

Х

You

You

You

1

That's correct, well done! Now that we know the values of a, b, and c, we can use the quadratic formula to find the solutions for x. Do you remember what the quadratic formula is?

Cerebot

Why can't we use the factorization method?

Type your question here...

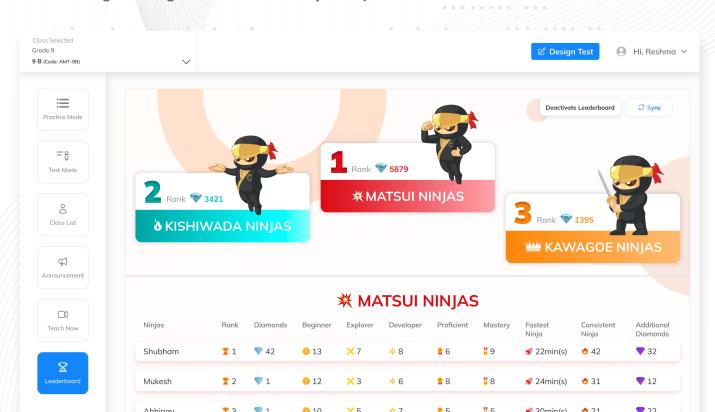
Offers dynamic constructive feedback and guided self-reflection

Cerebry's Al-powered diagnostics and assessments offer schools an innovative and data-driven approach to student evaluation. The Al-generated adaptive diagnostics reveal students' precise grade levels, allowing educators to effectively tailor their teaching approach. The diagnostics can identify and address students' most pressing misconceptions with ease, so educators can guide them towards a deeper understanding.

Rate			
Question 1 Easy	Question 2 Medium	Question 3 Hard	
Area Of Triangle			
Question 1 Easy.	Question 2 Medium	Question 3 Hard	
Volume Of Cubes And C	uboids		Preview
Question 1 Easy.	Question 2 Medium	Question 3 Herd	Question 3 Hard
Angles			 What is the area of the shaded triangle? T figure is not drawn to scale.
Question 1 Easy.	Question 2 Medium	Question 3 Hard	
Mix Bag			
Question 1 Easy.	Question 2 Easy.	Question 3 Medium	
Question 5 Hard			

At the click of a button, educators can also generate unique sets of offline examination papers to test students and ensure varied and comprehensive assessments at all levels of learning readiness.

Cerebry's proficiency reporting capabilities also offer learners the path to topic mastery and beyond. While adaptive diagnostics pinpoint learners' precise grade levels, the proficiency reports generated illuminate strong topics and areas for growth, guiding them towards excellence.


								œ	90 V	0		
•		••		Topic Name	Proficiency	Accuracy	Question Count	Marks	Skills			
		0.	• •	Surface Areas	13.89%	20.74%	3.77 (E2.22, M1.22, H0.33)	1.11	5			
		•••		Logical Thinking	18.06%	37.04%	2.55 (E0.89, M1.44, H0.22)	1.44	6			
				Algebra	37.5%	45.18%	3.78 (E0.78, M2.22, H0.78)	3.00	6			
		2		Distance Time And Speed	42.22%	38.89%	2.88 (E0.44, M1.00, H1.44)	2.11	3			
				Ratio And Proportion	42.86%	49.07%	3.55 (E0.89, M2.33, H0.33)	3.00	5			
				Solid Figures Sequences	53.33%	55.56%	2.34 (E0.78, M1.00, H0.56)	2.67	3			
				Statistics	57.78%	59.26%	2.00 (E0.22, M1.00, H0.78)	2.89	3			
				Rate And Percentage	61.11%	71.3%	3.34 (E0.56, M1.00, H1.78)	4.89	5			
	//			Exponents And Integers	66.67%	73.33%	3.56 (E0.67, M1.78, H1.11)	5.33	6			
2	//	//		Primes	82.22%	81.48%	2.33 (E0.11, M1.00, H1.22)	4.11	3			

Transform learning through timely alerts and data-driven actions with Cerebry's feedback loop. Receive instant notifications when students achieve significant milestones or encounter challenges, ensuring educators stay informed on their learning journey. Accurately identify which topics learners are excelling at and where they may need additional support via regular updates.

	•	0.0										•									
	•	0.0				.0	•					٠									
	•	0.0					•	÷					:=	Student V	This Month 🛛 🗸			Expo	ind all stu	dent	s
	•	0.0	• •				•	÷	0		0	•	Practice Mode								
		• <		•			•		0			•				Jastered Explored Learn	t Pending	Chapter: Factoring		~	
													-0	 Alfred 	Dominic S	2	12	Currently on Topic: Factorization Level : Ninia	8 🔨	9 6	
				•			•	÷	0				Test Mode	Date & Time	Reminder	Status	Descriptions		Actions		ł
•							•	÷.						3 Oct 2023	Milestone	Unresolved	Student Compl	leted The Topic - Factorization of Quadratic	@ Review		
								÷.					8	7:48 PM	winestone	omeaowed		Perfect Square Trinomials			
													Class List	3 Oct 2023 7:44 PM	Alert	Unresolved		Help in Factorization of Quadratic Trinomials and	🕫 Review		
																		e Trinomials Question No 6			
													4	3 Oct 2023 7:41 PM	Update	Unresolved		d Practicing Factorization of Quadratic Trinomial auare Trinomials Hard Level Ouestions	Review		
													Announcement	3 Oct 2023				leted The Medium Level of Topic - Factorization of	F		
						Ľ,	Ľ.		÷.	Ľ.				3 Oct 2023 7:41 PM	Milestone	Unresolved	200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200	omials and Perfect Square Trinomials	A Review		
				Ľ										3 Oct 2023 7:21 PM	Alert	the second second	Student Need	Help in Factorization of Quadratic Trinomials and	& Review		
				•									*	7:21 PM	Alert	Unresolved	Perfect Square	Trinomials Question No 4	W Review		
													Notification	3 Oct 2023	Alert	Unresolved	Student Need I	Help in Factorization of Quadratic Trinomials and	S Review		
	•	•	•	0.0			•	9	0		0	•		7:10 PM	- Alexandre	omesowed		Trinomials Question No 3			
	•	0.0		0.0	• •	.0	•	0	0	•				3 Oct 2023 7:06 PM	Update	Unresolved		d Practicing Factorization of Quadratic Trinomial	s Preview		
														7.06 PM			and Perfect Sq	uare Trinomials Medium Level Questions			
		•	•					÷.				•									

Transforms learning into an exciting team adventure

Spark team success with Cerebry's new gamification feature. Students can now join forces, practice together, and compete with other teams, making learning more engaging and fun. This isn't just about points; it's about fostering collaboration, boosting motivation, and transforming learning into an interactive journey.

Cerebry's Anti-Plagiarism Shield for Academic Integrity

At Cerebry, academic integrity is taken very seriously. The platform includes robust antiplagiarism features designed to deter and reduce the likelihood of plagiarism in practice and assessments.

← Practice Mode

To provide a secure learning environment free from plagiarism and unethical practises, we analyze student IP activity on this platform. This information will be shared with your instructor or teacher

A			
Access Type (Browser, mobile, POP3, etc.)	Location (IP address)	Date/Time (Displayed in your time zone)	Cerebry Activity
Browser (Chrome) Show details →	India (KL) (103.70.36.120)	10:35 am (0 minutes ago)	Practice
Browser (Chrome) Show details →	India (KL) (103.70.36.120)	10:17 am (18 minutes ago)	Assignment
Browser (Chrome) Show details \rightarrow	India (KL) (103.70.36.120)	9:51 am (43 minutes ago)	Competition
Browser	India (KL) (2401:4900:615b:87c5:45f:87c5:5ff:f39c:aba8)	8:14 am (1.5 hours ago)	Competition
Mobile	India (KL) (2401:4900:615b:87c5:45f:87c5:5ff:f39c:aba8)	Jul 13 (13 hours ago)	Assignment
Browser	India (KL) (2401:4900:615b:87c5:45f:87c5:5ff:f39c:aba8)	Jul 13 (14 hours ago)	Practice
Browser (Chrome) Show details \rightarrow	India (KL) (103.70.36.120)	Jul 13 (17 hours ago)	Assignment

🖈 Connect Competition 🛛 + Join New Class 🛛 🕘 Hi, Zawa Vara 🗸

About Marshall Cavendish Education

Marshall Cavendish Education (MCE) is a global education solutions provider dedicated to nurturing the joy of learning and preparing students for the future. We believe the best way to do so is by simplifying learning and listening to the needs of schools, teachers, students, and parents.

MCE makes world-class educational content more accessible through a seamless experience that integrates both print and digital resources. We provide holistic and end-to-end solutions customised to the school's requirements, with professional development to help educators implement the curriculum.

We've worked with ministries, policymakers, educators, and parents in over 90 countries, designing education solutions in 14 languages for Pre-K to 12. MCE is the only Asia-based publisher that is an endorsement partner of Cambridge International Education.

www.mceducation.com

