Errata List for Physics Matters for GCE 'O’ Level Textbook (5th Edition)
ISBN: 978-981-4987-97-4
5th Edition 2023
Note: The following errata will be corrected in subsequent reprints of this book.

Chapter	$\begin{gathered} \text { Page } \\ \text { No. } \end{gathered}$	Original	Change
1	7	Metre Rule and Measuring Tape The metre rule and measuring tape are instruments that are commonly used to measure length (Figure 1.6). A metre rule can measure lengths of up to one metre. A steel measuring tape is suitable for measuring straight distances longer than a metre. A cloth measuring tape is suitable for measuring the length along a curved surface, such as a person's waist or the diameter of a tree trunk.	Change "diameter" of a tree trunk to "circumference" of a tree trunk.
3	44	Forces To move our luggage from one point to another, we can either push it or pull it (Figure 3.1). Intuitively, a force can be thought of as a push or a pull due to interaction between objects to explain changes in motion. When a force is exerted on an object, the object can start or stop moving, slow down or speed up. It can also change the direction of motion of the object. Figure 3.1 Our hands exert either a push or a pull on our luggage to move it.	Change definition to: "a force is an interaction between objects to explain changes in motion."
5	84	Disciplinary Idea Forces help us to understand motion. The line of action of the force at different positions on a body can cause a turning effect, i.e. a moment. The body may tend to turn about its pivot of an applied force has a non-zero distance from the pivot. If the body is in balance, then its centre of gravity is either directly below or above the pivot point. The net moment due to gravity acting on the body about the pivot point will be zero.	Change to: "about its pivot if an applied force"
5	88	Let's Practise 5.2, Figure 5.24 Figure 5.24 Composite block made of iron and wood	Shift point for "CG" up to be higher than the centre of the block
6	102	The water flowing out of outlet 3 spurts out furthest, followed by the water from outlet 2 and then from outlet 1. How far the water spurts depends on the water pressure. The greater the water pressure, the further the water spurts out. Thus, the water at outlet 3 experiences a greater pressure and the water at outlet 1 experiences a lower pressure. Hence, we can conclude that water pressure increases with depth. Figure 6.15 A vessel with three outlets at different heights	Amend as follows: ... Thus, the water at outlet 3 experiences the greatest pressure and the water at outlet 1 experiences the lowest pressure.

Chapter	$\begin{array}{\|c} \hline \text { Page } \\ \text { No. } \\ \hline \end{array}$	Original		Change
6	109	Question 5(b) (a) Calculate the gas pressure. (Take density of water as $1000 \mathrm{~kg} / \mathrm{m}^{3}$.) (b) Determine the dens in the right U-tube. (c) If the right U-tube. doubled, what would be the height above level X?		Change "right" to "left"
6	110	Question 1(c) The hydraulic cylinder of the hydraulic press works Figure 6.36 . (a) Define pressure. (b) Would the hydraulic cylinder of Figure 6.35 be the cylinder on the left or the right in Fligure 6.36 ? left or the right in Figure 6.36? A force of 800 N is required to cut the workpiece, and the ratio of areas A_{1} to A_{2} is $1: 4$. Calculate the force exerted by an operator on the lever to cut the workpiece. (d) Would changing the liquid to a higher density in the hydraulic cylinder reduce the force exerted by the operator? Explain.		Change "lever" to "piston"
7	120			For panel 2, rephrase to: ...(due to the resultant force of its weight and...) For panel 3, rephrase to: ...(due to the resultant force of its weight and...)
7	121	Figure 7.19		Increase the length of the arrow X such that it reaches the middle of the pendulum bob:

Chapter	Page No.	Original	Change
7	135	Question 3(a) The pendulum bob is displaced to point $R, 2.0 \mathrm{~cm}$ above P and released from rest. Assuming that air resistance is negligible, calculate the: (a) amount of energy in the gravitational potential store of the pendulum bob at point R ; and (b) amount of energy in the kinetic store of the bob at point $\mathrm{Q}, 0.5 \mathrm{~cm}$ above P.	Amend as follows: difference in amount of energy in the gravitational potential store of the pendulum between points R and P
8	138		Amend as follows: The attractive forces in the springs weaken when stretched. We will later learn that this behaviour is crucial in allowing a change of state.
8	143	Figure 8.7 How a thermometer measures the temperature of a substance	For panel 1, rephrase to: When a substance such as water is heated, the kinetic energy of the particles increases, and the particles vibrate or move faster.
8	143	Pressure In Chapter 6, we learnt that pressure is the average force per unit area. For a thick book resting on a table top, the pressure due to the book is equal to its weight divided by the area of contact with the table. At the particle level, this pressure is the average force per unit area exerted by the particles of the book when they collide with the table surface.	Amend as follows: A solid only exerts pressure downwards on its base due to its weight but a fluid (liquid or gas) exerts pressure in all directions. When gas is trapped in a container, the particles exert pressure on all the inner walls of the container (Figure 8.8).
8	144	When there are many gas particles colliding with the inner wall of the container, the forces add up. The total force exerted by the gas per unit area is the pressure. - At the particle level, pressure is the average force exerted by the particles per unit area.	Amend as follows: Gases exert pressure, which is the average force exerted by the particles per unit area.

Chapter	Page No.	Original	Change
8	144	Worked Example 8B (a) How does an increase in temperature affect the kinetic store of the particles in matter? (b) Containers A and B have the same number and type of particles at the same temperature. The volume of container B is larger than container A. Explain whether the two containers have the same gas pressure. Answer (a) When temperature increases, the average kinetic energy of the particles in the body increases. (b) No, the gas pressure in B is lower than in A. Since container B has a larger volume, the number of particles per unit volume decreases. Therefore, the gas particles collide less frequently with the inner wall of the container. This leads to a smaller average force exerted per unit area.	Amend as follows: (a) How does an increase in temperature affect the average kinetic energy of the particles in matter? (b) (i) Containers A and B have the same number and type of particles at the same temperature. The volume of container B is larger than container A. In which container do the gas particles collide more frequently with the walls of the container? (ii) Which container experiences a larger pressure due to the gas inside it? Answer (b) (i) Since container B has a larger volume, the number of particles per unit volume is lower than that in container A. Therefore, the gas particles in container A collide more frequently with the inner walls of the container. (ii) Container A experiences a larger gas pressure due to the larger average force exerted per unit area.
8	144	$\left[\begin{array}{l} \text { Let's Practise } 8.2 \text {. } 1 \text { A gas is kept in a container. } \\ \text { (a) Explain what happens to the gas pressure in the container } \\ \text { when the emperature of the container is inceased. } \\ \text { (b) Explain what happens to the gas pressure in the container } \\ \text { after some gas is released from the container. } \end{array}\right.$	Amend as follows: (a) Explain what happens to the motion of the gas particles in the container when the temperature is increased. (b) Explain what happens to gas pressure in the container after some gas is released from the container.
8	145		Delete "stores" from point 3.

Chapter	$\begin{gathered} \hline \text { Page } \\ \text { No. } \end{gathered}$	Original	Change
8	145		Amend as follows: Gases exert pressure, which is the average force exerted by the particles per unit area.
8	146	Section B, Question 1 1 A container with a moveable piston is filled with some gas (Figure 8.10). (a) Explain why the pressure in the container increases when the piston is pushed in. (b) Explain why a gas can be compressed but not a liquid. (c) Explain why the number of collisions per unit area inside the container decreases when the container is put inside a freezer.	Delete part (a).
9	156	- Lower surface temperature - Higher surface temperature - Smaller surface area - Larger surface area - Shiny, smooth and light-coloured surface - Matt, rough and dark-coloured surface	Delete "Lower surface temperature" and "Higher surface temperature".
9	164		Amend as follows: In metals, by the vibration of particles and lattice vibration and movement of electrons
10	169	- Heat capacity C of an object is the change of its internal energy per unit - change in its temperature. - $C=\frac{Q}{\Delta \theta} \quad$ where $Q=$ change in internal energy (J) by energy transfer $\Delta \theta=$ change in temperature $\left(\mathrm{K}\right.$ or $\left.{ }^{\circ} \mathrm{C}\right)$	Amend as follows: Heat capacity C of an object is the change in amount of its internal energy per unit change in its temperature. where $Q=$ amount of energy transferred (J) to or from the internal store of the object by heating

Chapter	Page No.	Original	Change
10	169	Specific heat capacity cof a material is the change of its internal energy per unit mass for each unit change in its temperature. $\begin{aligned} \boldsymbol{c}=\frac{\mathrm{C}}{m}=\left(\frac{Q}{m \Delta \theta}\right) \quad \text { where } C & =\text { heat capacity }\left(\mathrm{J} / \mathrm{K} \text { or } \mathrm{J} /{ }^{\circ} \mathrm{C}\right) \\ Q & =\text { change in internal energy }(\mathrm{J}) \text { by energy } \\ & \text { transfer } \\ m & =\text { mass of substance }(\mathrm{kg}) \\ \Delta \theta & =\text { change in temperature }\left(\mathrm{K} \text { or }{ }^{\circ} \mathrm{C}\right) \end{aligned}$	Amend as follows: Specific heat capacity c of a material is the change in amount of its internal energy per unit mass for each unit change in its temperature. where $Q=$ amount of energy transferred (J) to or from the internal store of the material by heating
14	258	 Figure 14.57 Formation of a virtual image ($u<f$, where u is the object distance)	Change the red line arrow to dotted line arrow to indicate that it is virtual:
14	265	Figure 14.68 1 Two mirrors are perpendicular to each other as shown in Figure 14.68. Figure 14.68	Amend the arrows as follows:
16	285	Lighting displays in Singapore are a common sight. This dazzling display of lights will not be possible without electric currents. Ironically, we cannot see electric currents in most instances. We only recognise it when it flows through other objects. In our modern lives, as we learn how to harness and control it, electric currents has brought about many conveniences. It enables us to use our smartphones and the Internet. Electric currents also occurs in nature and is all around us. What are electric currents and how can we understand it?	Amend as follows: ...We only recognise them when they flow through other objects. In our modern lives, as we learn how to harness and control them, electric currents have brought many conveniences. They enable us to use our smartphones and the Internet. Electric currents also occur in nature and are all around us. What are electric currents and how can we understand them?
16	289	A common analogy for describing electric current flowing in a circuit is the flow of water. Consider the flow of water in Figure 16.7. For this analogy, it is also useful to think of water as the amount of charge. The battery is likened to the water pump and its e.m.f. is similar to the pumping action that creates the water flow. Energy in the chemical potential store is transferred to the kinetic store of the electric charge as it flows through the circuit.	Amend as follows: ... chemical store of the battery is transferred ...

Chapter	Page No.	Original	Change
16	289		Amend as follows:
16	290	Let us look at Figure 16.7 again. Energy is transferred electrically from the chemical potential store of the battery to the kinetic (rotation) and internal (thermal) stores of the motor. The called the potential difference.	Amend as follows: Energy is transferred electrically from the chemical potential store of the battery to the kinetic (rotation) and internal (thermal) stores of the motor.
16	290	Disciplinary Idea Matter and energy make up the Universe In this section, we see that energy transfers in electrical circuits are brought about by a flow of electric charge (matter) or current and are related to instance, the motor is able to turn (increase in kinetic brought about by running an electric current through the motor.	Amend as follows: .(increase in energy in the kinetic store of the motor).
16	293	Learning Outcomes - State that resistance $=$ p.d./current. - Apply the relationship $R=V / /$ to new situations or to solve related problems. - Recall and apply the relationship of the proportionality between resistance and the length and cross-sectional area of a wire to new situations or to solve related problems. - Describe the effect of temperature increase on the resistance of a metallic conductor. - Sketch an interpret the $I-V$ characteristic graphs for a metallic conductor at constant temperature (ohmic conductor), for a filament lamp and for a semiconductor diode.	Change to: Sketch and interpret...

Chapter	Page No.	Original	Change
16	296	Worked Example 16D \qquad Wire P and wire Q are both made from the same materials. They are 10 m long. The resistance of wire P is 75Ω and its cross-sectional area is 0.1 mm^{2}. If wire P has a cross-sectional area of $1 \mathrm{~mm}^{2}$, what is the resistance of wire Q ? Thought Process Since wire P and Q are made from the same material, they have the same value of constant k. the wires is only both wires are the same, the difference in the resistances of Ares is only dependent on the cross-sectional areas. Answer $R=k \frac{l}{A}$ For wire P and wire Q , we can write the relationship as: $R_{\rho}=\frac{k_{A}}{A_{p}}$ $k_{p}=R_{p} A_{p}-\cdots(1)$ $R_{Q}=\frac{k_{Q}}{A_{o}}$ $\begin{array}{ll} R_{Q}=A_{Q} A_{Q} \cdots-\cdots(2) \end{array}$ Since the wire are of the same material, $k_{p}=k_{Q 1}$ $\text { Equating equations } 1 \text { and } 2: \frac{R_{Q}}{R_{p}}=\frac{A_{p}}{A_{o}}$ $R_{Q}=\frac{A_{p}}{A_{o}} R_{p}=\frac{0.1}{1}(75)=7.5 \Omega$	Amend as follows:
16	297	Conductors that do not have a direct proportional relationship between V and I are known as non-ohmic conductors. This is because the resistances of these conductors change as their temperature changes. A tungsten filament lamp is an example of a non-ohmic conductor. The resistance of tungsten increases as temperature increases. Other examples of nonthermistors.	Amend as follows: A tungsten filament lamp is an example of a non-ohmic conductor. The resistances of non-ohmic conductors are not constant and they vary with temperature. In the case of tungsten, its resistance increases as the temperature increases.
16	298		Shift the horizontal axis up so that the graph touches the origin:
16	298	Procedure 1 Set up the apparatus according to the circuit diagram in Figure 16.20. 2 Adjust the rheostat to the maximum resistance so that the initial current is small. This also minimises heating of the rheostat. 3 Record the ammeter (I) and voltmeter (V) readings. 4 Adjust the rheostat to reduce the current by 1 A . Record the ammeter I and voltmeter V readings. 5 Repeat step 4 to obtain four more readings. 6 Plot V / V against I / A. Determine the gradient of the graph.	Change "reduce" to "increase".
16	300		Change "convectional" to "conventional".

Chapter	Page No.	Original	Change
17	312	Table 17.2 Effect of the different arrangements of electrical components on th potential difference of the circuit	Change " $\mathrm{V}^{\text {" }}$ to " V_{ε} ".
17	313	 Figure 17.13 Comparison of series and parallel circuits	Change "lit" to "light".
17	314	Worked Example 17C In Figure 17.14, calculate the p.d. V. Thought Process To find the p.d. V, we need to know the value of the current I_{1} flowing through the 1Ω resistor since $V=\left(I_{1}\right)(1 \Omega)$. - I_{1} is half of I since $I=I_{1}+I_{2}$ and $I_{1}=I_{2}$ because the resistance in each branch is the same. - To fin (I_{2},) we need to know the effective resistance of the circuit. This can be done by first replacing R, and R_{2} with an equivalent resistor. The effective resistance is the sum of the resistances of the equivalent resistor and the 1Ω resistor.	Delete the subscript " 2 ".
17	317	This ratio of the resistances can also be expressed in terms of the length of the resistor or rheostat or the angle of turns of a potentiometer slider. Since R is proportional to I, V_{1} and V_{2} may be expressed as: $\begin{array}{ll} V_{1}=\frac{I_{1}}{L_{1}+I_{2}} V_{s} \\ V_{2}=\frac{I_{2}}{L_{1}+I_{2}} V_{s} & \text { where } I_{1} \text { and } I_{2} \text { are the equivalent lengths } \\ \text { of } R_{1} \text { and } R_{2} \end{array}$	Replace " $I 1$ " with " $l 1$ " and " $I 2$ " with " l_{2} ".
17	324	Section B, Question 5	Label current I :
18	334		Change to: However, the water ...

Chapter	Page No.	Original	Change
18	334	Figure 18.10 An alternating current circuit with (a) no safety features and (b) with safety features	Amend the symbol for circuit breaker:
19	358		Delete the branch on how magnetism occurs.
19	358		Draw an arrow towards the left from "Magnetic materials" to "Magnets".
19	358		Change to "can form".
20	370		Make the green dotted lines between N and S poles, and the green solid line representing magnetic field parallel:

Chapter	$\begin{gathered} \hline \text { Page } \\ \text { No. } \end{gathered}$	Original	Change
20	371		Change "force on" to "motion to".
20	372		Change "split ring" to "split-ring".
20	372	$\left[\begin{array}{l}\text { As the coil rotates, it momentarily disconnects } \\ \text { itself from the cabon brusher. At this point, the } \\ \text { current from the cell is cut off from the coil and the } \\ \text { momentum of the coil carries it past this position. }\end{array}\right]$	Rephrase to: .the current from the cell to the coil is cut off and the..."
20	372	Figure 20.23 (a) Supply is cut-off momentarily when the coil is vertical and (b) current is maintained in a the coil	Change "cut-off" to "cut off".

Chapter	Page No.	Original	Change
20	373		Figure 20.24: Remove the labels " S " and " N ". Figures under Answer: Amend open switches to closed switches. Third line of Answer (c): Change "based on" to "as determined by".
20	375		Amend as follows:
20	375	Electricity and magnetism A magnetic field	Change to "Current or moving charge".

Chapter	Page No.	Original	Change
20	375		Text box with "A current-carrying wire gets deflected": Add a new point "A beam of charged particles moves in a circular path". Amend diagram as follows:
20	377	Section B, Question 1	Change the open switch to closed switch.
20	377	Section B, Question 5:	Amend the symbol for d.c. power power supply as follows:
21	391	One of the main challenges in the transmission and distribution of electricity from power stations to households is the loss of power due to ohmic heating $\left(P=I^{2} R\right)$ in the cables. If very large currents are transmitted, then losses can be very high due to the squaring effect of current in the power loss equation. For instance, if the current transmitted is 20 kA and the resistance in the cable is 0.01Ω. Then, even at such a low resistance, the power loss would be 4 MW . This will cause a heating effect in the power cables.	Change to: ...is 0.01Ω, then even...
22	417		Add the following at the end of the second paragraph: Personnel working in these locations should have their time spent monitored.

Chapter	Page No.	Original	Change
22	417	Storage tore a radioactive material in a sealed from the source. This prevents the nuclear radiation from penetrating through the contain material must be stored in a lead box. The boxes should also be clearly labelled and ept in a secure place that is not easily accessible by anyone	Change to: For instance, a sample of...
22	418		Delete "are related".
22	418	Radioactive istopes	Change to "isotopes".
Answers	423	Chapter 11: General Wave Properties I: Introduction Let's Review Section A: Multiple-choice Questions $1 \mathrm{~A} \quad 2 \mathrm{D} 3 \mathrm{~B} \quad 4 \mathrm{C} 5 \mathrm{D}$	Amend answer to " C ".
Answers	423	Chapter 13: Electromagnetic Waves Let's Review Section A: Multiple-choice Questions 1 A 2 C 3 D 4 B 5 C Section B: Structured Questions 2 (a) 0% (b) 30% 5 (a) 1.0×10^{6} (b) $3.3 \times 10^{-6} \mathrm{~s}$ or $3.3 \mu \mathrm{~s}$ (c) $82.5 \times 10^{-6} \mathrm{~m}$	Amend answers as follows: (b) $6.7 \times 10^{-6} \mathrm{~s}$ (c) $1.7 \times 10^{-4} \mathrm{~m}$
Answers	423	Chapter 14: Light Let's Practise 14.2 $\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}$ Let's Practise 14.4 1 (a) $0.80 \mathrm{~cm}, 3.0 \mathrm{~cm}$ 2 (a) $6.0 \mathrm{~cm}, 6.0 \mathrm{~cm}$ Let's Review Section A: Multiple-choice Questions 1D 2B 3A 4C 5C	Amend answers as follows: 1. B 2. A 3. D

Chapter	Page No.	Original	Change
Answers	424	Chapter 18: Practical Electricity Let's Practise 18.1 $\begin{array}{ll}1 & 2400 \text { W } \\ 2 & \$ 3.84\end{array}$ $2 \$ 3.84$ Let's Review Section A: Multiple-choice Questions $1 \mathrm{~A} \quad 2 \mathrm{~A} \quad 3 \mathrm{C} \quad 4 \mathrm{~A} \quad 5 \mathrm{D}$ Section B: Structured Questions 2 \$0.72 4 (a) 56.52 A (b) 5 (a) 8.83 kW h (b) $\$ 1.77$ (c) 55.2 hours	Amend answer to "552 hours".
Answers	424	Chapter 20: Electromagnetism Let's Review Section A: Multiple-choice Questions 1 D 2 B $3 \mathrm{C} \quad 4 \mathrm{D} \quad 5 \mathrm{C}$	Amend answer to "C".
Quick Revision Guide	427	- Internal energy consists of the kinetic energy associated with the random motion of the particles and the total potential energy between the particles in the system. - Heat capacity C of an object is the change of its internal energy per unit change in its temperature. $\begin{aligned} C=\frac{Q}{\Delta \theta} \quad \text { where } Q & =\text { change in internal energy }(\mathrm{J}) \text { by } \\ & \text { energy transfer } \\ \Delta \theta & =\text { change in temperature }\left(\mathrm{K} \text { or }{ }^{\circ} \mathrm{C}\right) \end{aligned}$	Amend as follows: Heat capacity C of an object is the change in amount of its internal energy per unit change in its temperature. where $Q=$ amount of energy transferred (J) to or from the internal store of the object by heating
Quick Revision Guide	428	- Specific heat capacity c of a material is the change of its internal energy per unit mass for each unit change in its temperature. $C=\frac{C}{m}=\left\|\frac{Q}{m \Delta \theta}\right\|$ where $C=$ heat capacity $\left(J / K\right.$ or $\left.J /{ }^{\circ} \mathrm{C}\right)$ $Q=$ change in internal energy (J) by energy transfer $m=$ mass of substance (kg) $\Delta \theta=$ change in temperature (K or ${ }^{\circ} \mathrm{C}$)	Amend as follows: Specific heat capacity c of a material is the change in amount of its internal energy per unit mass for each unit change in its temperature. where $Q=$ amount of energy transferred (J) to or from the internal store of the material by heating

