LET'S EXPLORE!

CHAPTER

11.1 Measurement of Area
11.2 Area of Triangles and Compound Shapes
11.3 3D Shapes and Measurement of Volume
11.4 Volume of Cubes and Cuboids
11.5 Surface Area of Cubes and Cuboids
11.6 Volume and Surface Area of Compound Solids

YOU WILL LEARN TO

11.1

Measurement of Area

- convert between the units of measuring area ($\mathrm{cm}^{2}, \mathrm{~m}^{2}, \mathrm{ha}, \mathrm{mm}^{2}$)

Recall

The area of a 2D shape is the amount of space inside it. Area of the square $=1 \mathrm{~cm} \times 1 \mathrm{~cm}=1 \mathrm{~cm}^{2}$

Units of Area

Square centimetre ($\mathbf{c m}^{2}$) and square metre (\mathbf{m}^{2}) are standard units for measuring area. How many one-centimetre squares can fit into a one-metre square?

From the representation, 10000 squares of $1 \mathrm{~cm}^{2}$ can fit into a square of $1 \mathrm{~m}^{2}$. Area of $1 \mathrm{~m}^{2}$ square $=1 \mathrm{~m} \times 1 \mathrm{~m}=100 \mathrm{~cm} \times 100 \mathrm{~cm}=10000 \mathrm{~cm}^{2}$

A quick way to convert is as follows:
$1 \mathrm{~m}=100 \mathrm{~cm}$
$1 \mathrm{~m}^{2}=100^{2} \mathrm{~cm}^{2}$
$=10000 \mathrm{~cm}^{2}$
\therefore Conversely, 10000 squares of $1 \mathrm{~cm}^{2}=1$ square of $1 \mathrm{~m}^{2}$. Then, 1 square of $1 \mathrm{~cm}^{2}=\frac{1}{10000}$ square of $1 \mathrm{~m}^{2}$.

```
1 cm}\mp@subsup{}{2}{=}=\frac{1}{10000}\mp@subsup{m}{}{2
```

For larger areas, square kilometre ($\mathbf{k m}^{\mathbf{2}}$) is also used.
Area of $1 \mathrm{~km}^{2}$ square $=1 \mathrm{~km} \times 1 \mathrm{~km}=1000 \mathrm{~m} \times 1000 \mathrm{~m}=1000000 \mathrm{~m}^{2}$

$$
1 \mathrm{~km}^{2}=1000 \mathrm{~m}^{2} \text { or } 1 \mathrm{~m}^{2}=\frac{1}{1000000} \mathrm{~km}^{2}
$$

Hectare (ha) is another unit for measuring area.

$$
1 \mathrm{ha}=10000 \mathrm{~m}^{2}
$$

Example 1

Convert each of the following measurements to the required units.
a $1.4 \mathrm{~m}^{2}$ to cm^{2}
(b) $26000 \mathrm{~cm}^{2}$ to m^{2}

Solution:

$$
\text { a } \begin{aligned}
1 \mathrm{~m}^{2} & =10000 \mathrm{~cm}^{2} \\
1.4 \mathrm{~m}^{2} & =(1.4 \times 10000) \mathrm{cm}^{2} \\
& =14000 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { (b) } \begin{aligned}
1 \mathrm{~cm}^{2} & =\frac{1}{10000} \mathrm{~m}^{2} \\
26000 \mathrm{~cm}^{2} & =26000 \times \frac{1}{10000} \mathrm{~m}^{2} \\
& =2.6 \mathrm{~m}^{2}
\end{aligned}
\end{aligned}
$$

$\rangle_{T r y!}$ Convert each of the following measurements to the required units.
a $0.8 \mathrm{~m}^{2}$ to cm^{2}
(b) $7000 \mathrm{~cm}^{2}$ to m^{2}

Example 2

Convert each of the following measurements to the required units.
a $1.5 \mathrm{~km}^{2}$ to m^{2}
b $500000 \mathrm{~m}^{2}$ to km^{2}
C 4.5 ha to m^{2}
d $20000 \mathrm{~m}^{2}$ to ha
(e $2.5 \mathrm{~cm}^{2}$ to mm^{2}
(f) $5600 \mathrm{~mm}^{2}$ to cm^{2}

Solution:

a $1 \mathrm{~km}^{2}=1000000 \mathrm{~m}^{2}$ $\therefore 1.5 \mathrm{~km}^{2}=1.5 \times 1000000 \mathrm{~m}^{2}$
$=1500000 \mathrm{~m}^{2}$
b $1000000 \mathrm{~m}^{2}=1 \mathrm{~km}^{2}$

$$
\begin{aligned}
1 \mathrm{~m}^{2} & =\frac{1}{1000000} \mathrm{~km}^{2} \\
\therefore 500000 \mathrm{~m}^{2} & =\frac{500000}{1000000} \mathrm{~km}^{2} \\
& =0.5 \mathrm{~km}^{2}
\end{aligned}
$$

C $1 \mathrm{ha}=10000 \mathrm{~m}^{2}$

$$
\begin{aligned}
\therefore 4.5 \mathrm{ha} & =4.5 \times 10000 \\
& =45000 \mathrm{~m}^{2}
\end{aligned}
$$

d $1 \mathrm{~m}^{2}=\frac{1}{10000} \mathrm{ha}$
C $1 \mathrm{~cm}^{2}=100 \mathrm{~mm}^{2}$
(f) $1 \mathrm{~mm}^{2}=\frac{1}{100} \mathrm{~cm}^{2}$
$\begin{aligned} \therefore 20000 \mathrm{~m}^{2} & =\frac{20000}{10000} \\ & =2 \mathrm{ha}\end{aligned}$

$$
\begin{aligned}
\therefore 2.5 \mathrm{~cm}^{2} & =2.5 \times 100 \\
& =250 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\therefore 5600 \mathrm{~mm}^{2} & =\frac{5600}{100} \\
& =56 \mathrm{~cm}^{2}
\end{aligned}
$$

Zry!convert each of the following measurements to the required unit.
a $2.3 \mathrm{~km}^{2}$ to m^{2}
(b) $400000 \mathrm{~m}^{2}$ to km^{2}
C 2.7 ha to m^{2}
d $45000 \mathrm{~m}^{2}$ to ha
(e) $12 \mathrm{~cm}^{2}$ to mm^{2}
f $8400 \mathrm{~mm}^{2}$ to cm^{2}

Practice 11A

Concept-Building Questions

(1) Convert each of the following measurements to cm^{2}.
a $4 \mathrm{~m}^{2}$
b $20 \mathrm{~m}^{2}$
c $3.1 \mathrm{~m}^{2}$
d $0.008 \mathrm{~m}^{2}$
(2) Convert each of the following measurements to m^{2}.
a $20 \mathrm{~cm}^{2}$
(b) $900 \mathrm{~cm}^{2}$
c $5060 \mathrm{~cm}^{2}$
d $17000 \mathrm{~cm}^{2}$
(3) Convert each of the following measurements to the units in brackets.
a $81.5 \mathrm{~cm}^{2}\left(\mathrm{~m}^{2}\right)$
b $\quad 1.25 \mathrm{~m}^{2}\left(\mathrm{~cm}^{2}\right)$
C $1283 \frac{3}{10} \mathrm{~cm}^{2}\left(\mathrm{~m}^{2}\right)$
d $8 \frac{4}{11} \mathrm{~m}^{2}\left(\mathrm{~cm}^{2}\right)$
(4) Convert each of the following to the required units.
a $6.2 \mathrm{~km}^{2}$ to m^{2}
(b) $0.25 \mathrm{~km}^{2}$ to m^{2}
d $6500000 \mathrm{~m}^{2}$ to km^{2}
(e) $125000 \mathrm{~m}^{2}$ to km^{2}
(5) Convert each of the following to the required units.
a 3.4 hato m^{2}
b 0.56 hato m^{2}
d $4500 \mathrm{~m}^{2}$ to ha
(e) $13000 \mathrm{~m}^{2}$ to ha
C $\quad 12.1 \mathrm{hatom}^{2}$
(6) Convert each of the following to the required units.
a $12 \mathrm{~cm}^{2}$ to mm^{2}
b $15.6 \mathrm{~cm}^{2}$ to mm^{2}
C $140 \mathrm{~mm}^{2}$ to cm^{2}
d $2500 \mathrm{~mm}^{2}$ to cm^{2}
$41 \mathrm{~m}^{2}$ to mm^{2}
f $180000 \mathrm{~mm}^{2}$ to m^{2}

Context-Based Questions

(7) A large cardboard has length 2 m and breadth 1.2 m .

Calculate its area in
(i) m^{2}
ii) cm^{2}
(8) Find the area of the land in m^{2}.

(9) Ameera argues that $4.2 \mathrm{~km}^{2}=4200 \mathrm{~m}^{2}$. Do you agree? Explain.

Area of Triangles and Compound Shapes

- find the area of triangles
- find the area of a compound figure

Area of Triangles

Knowledge-Building Task

(1)Cut an A4-sized piece of paper into four equal rectangles. Label them rectangles 1, 2, 3 and 4. Measure and record the length and breadth of one rectangle. Then find its area.

Rectangle 1
(2) Using rectangle 1, mark a point anywhere on one side of the length of the rectangle. Then draw a line from the point to each corner on the opposite side of the rectangle and shade the triangle as shown.

(4) Compare the base and height of triangle A to the length and breadth of rectangle 1. What do you notice?

Triangle A

Rectangle 1
(5) Repeat steps 2 to 5 with the remaining rectangles 2,3 and 4 . Use different points in step 2 each time as shown.

Rectangle 2

Rectangle 3

Rectangle 4
(6) Write the area of a triangle using its base and height.

From the task, notice that the area of a triangle is half the area of a rectangle with the same base length and height.

$$
\begin{aligned}
\text { Area of triangle } & =\frac{1}{2} \times \text { base } \times \text { height } \\
& =\frac{1}{2} \times b \times h
\end{aligned}
$$

For a triangle, there are several ways to define its base and the corresponding height.

Triangle 1

Triangle 2

Triangle 3

Example 3

Find the area of each of the following triangles.
a

(b)

Solution:

D In this case, we take $b=20, h=10$ Area of triangle $=\frac{1}{2} \times 20 \times 10$

$$
=100 \mathrm{~cm}^{2}
$$

$\underbrace{\wedge}$ Try!Find the area of each of the following triangles.
(a

b

${ }_{\text {}}$ سว 乙 ((q) ${ }_{\imath}$ سว O\& (D)

Example 4

The area of the triangle plot of land is $600 \mathrm{~m}^{2}$. Given that the perimeter is 120 m and the base is 40 m , find the length of the longest side of the triangle.

Solution: Area $=\frac{1}{2} \times b \times h$

$$
\begin{aligned}
600 & =\frac{1}{2} \times 40 \times h \\
h & =30 \mathrm{~m}
\end{aligned}
$$

Length of longest side $=120-40-30=50 \mathrm{~m}$

The area of the triangle is $6 \mathrm{~cm}^{2}$. The perimeter is 17 cm .
Given that the height is 3 cm , find the longest side of the triangle.

Compound Shapes

Consider the following figures.

Figure 1

Figure 2

Figure 1 is a rectangle. The area of Figure 1 can be calculated using the formula,

$$
\text { Area of rectangle }=l \times b
$$

To find the area of Figure 2, observe that it is made up of two figures, a rectangle and a trapezium.

Figure 2

Area of Figure $2=$ area of rectangle $A+$ area of triangle $B+$
area of rectangle $C+$ area of triangle D

Many figures in real life can be made up of more than one shape. For the following compound shapes, find out what basic shapes they are made up of.

Example 5

Find the area of the figure.

Solution:

Area of the figure $=$ area of $A+B+C$

$$
=\frac{1}{2} \times 3 \times 4+15 \times 4+18 \times 12
$$

$$
=282 \mathrm{~cm}^{2}
$$

Try! Find the area of the figure.

Practice 11B

Concept-Building Questions

(1) Given the base of each of the following triangles, mark its corresponding height.
a

b

c

d

(2) Given the height of each of the following triangles, mark its corresponding base.
a

b

c

d

(3) Find the missing numbers.
a

b

c

d

e

(4) Find the area of each of the following figures.

b

Context-Based Questions

(5) The diagram shows a triangular pond. Find the area of the pond in two ways.
a Using 12 m as the base.
b Using 15 m as the base.

What do you observe?
(6) The diagram shows the floor plan of a school compound. All dimensions are in metres. Calculate the area of the floor plan.

(7) The diagram shows the floor plan of a shop in a shopping centre. The shaded part of the shop is not occupied. Find the area of the shop that is occupied.

- find the faces, vertices and edges of 3D shapes

Properties of 3D Shapes

As we have seen in the previous chapters, A 3D shape has volume instead of being 'flat' on a piece of paper.

Figure 1 shows examples of 3D shapes.

Figure 1

We can classify the 3D shapes in Figure 1 into two categories: those with a curved surface and those without a curved surface.

A sphere has only one curved surface.

Sphere
(ball)

A cone has one curved surface and one flat surface.

Cone

Curved surface

Circular base

A cylinder has one curved surface and two flat surfaces.

All the other 3D shapes in Figure 1 have only flat surfaces. They are called polyhedra.

Consider the three shapes. They have uniform cross-sectional area and only flat surfaces. This family of 3D shapes is called prisms.

In all the above 3D shapes,

1. The edges are the lengths of the sides. A cube and cuboid have 12 edges each. The triangular prism has 9 edges.
2. The vertices are the points where any two edges meet.

A cube and cuboid have 8 vertices each. A triangular prism has 6 vertices.

3. The faces are the flat surfaces of the shape.

The cube and cuboid have 6 faces each. The triangular prism has 5 faces.

Knowledge-Building Task

(a) Consider each of the following solids and complete the number of edges (E), vertices (V) and faces (F) of the solids.

(b) What do you observe about the number of edges? Generalise the pattern that you observe. Using this pattern, convince yourself that the number of edges is always divisible by 3 .
(c) Convince yourself that the number of vertices is always an even number.

Knowledge-Building Task

(a) Consider each of the following solids and complete the number of edges (E), vertices (V) and faces (F) of the solids.

(b) What do you observe about the number of edges?
Generalise the pattern that you observe. Using this pattern, convince yourself that the number of edges is always an even number.
(c) Convince yourself that the number of faces in the pyramids equals the number of vertices.

Volume

\square
Volume is the measure of the amount of space inside a 3D object.

The volume of a cube measures the space inside the cube. A cube of size 1 cm by 1 cm by 1 cm has a volume of $1 \mathrm{~cm}^{3}$. A cube of length 1 m has a volume of $1 \mathrm{~m}^{3}$.

How many $1 \mathrm{~cm}^{3}$ cubes are needed to fill a cube of length 1 m ?

It can be seen from the above that we need $100 \times 100 \times 100$ cubes of length 1 cm to fill up a cube of length 1 m .

Volume of cube of length $1 \mathrm{~m}=1 \mathrm{~m} \times 1 \mathrm{~m} \times 1 \mathrm{~m}$

$$
\begin{aligned}
& =100 \mathrm{~cm} \times 100 \mathrm{~cm} \times 100 \mathrm{~cm} \\
& =1000000 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of cube of length $1 \mathrm{~cm}=1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 1 \mathrm{~cm}$

$$
\begin{aligned}
& =\frac{1}{100} \mathrm{~m} \times \frac{1}{100} \mathrm{~m} \times \frac{1}{100} \mathrm{~m} \\
& =\frac{1}{1000000} \mathrm{~m}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& 1 \mathrm{~m}^{3}=1000000 \mathrm{~cm}^{3} \\
& 1 \mathrm{~cm}^{3}=\frac{1}{1000000} \mathrm{~m}^{3}
\end{aligned}
$$

Example 6

Convert each of the following.
a $2.5 \mathrm{~m}^{3}$ to cm^{3}
(b) $2000 \mathrm{~cm}^{3}$ to m^{3}
Solution:
a $1 \mathrm{~m}^{3}=1000000 \mathrm{~cm}^{3}$

$$
\begin{aligned}
2.5 \mathrm{~m}^{3} & =2.5 \times 1000000 \mathrm{~cm}^{3} \\
& =2500000 \mathrm{~cm}^{3}
\end{aligned}
$$

(b) $1 \mathrm{~cm}^{3}=\frac{1}{1000000} \mathrm{~m}^{3}$

$$
\begin{aligned}
2000 \mathrm{~cm}^{3} & =2000 \times \frac{1}{1000000} \mathrm{~m}^{3} \\
& =\frac{2}{1000} \mathrm{~m}^{3} \\
& =0.002 \mathrm{~m}^{3}
\end{aligned}
$$

Try! Convert each of the following.
a $1.3 \mathrm{~m}^{3}$ to cm^{3}
(b) $950 \mathrm{~cm}^{3}$ to m^{3}

$$
{ }_{\varepsilon} u \frac{0000 \tau}{6 l}(q) \varepsilon w כ 00000 \varepsilon L(D)
$$

In real life, we also use millilitre ($\mathrm{m} l$) and litre (l) to measure volume.

$$
\begin{aligned}
1 \mathrm{~m} l & =1 \mathrm{~cm}^{3} \\
1 l & =1000 \mathrm{~m} l \\
& =1000 \mathrm{~cm}^{3}
\end{aligned}
$$

300 ml

$$
300 \mathrm{ml}=300 \mathrm{~cm}^{3}
$$

$$
\begin{aligned}
1.5 l & =1.5 \times 1000 \mathrm{~cm}^{3} \\
& =1500 \mathrm{~cm}^{3}
\end{aligned}
$$

Practice 11C

Concept-Building Questions

(1) For each of the following shapes, state the number of curved surface(s) and the number of flat face(s).
a

b

c

d

e

Low Res.
f

(2) Convert each of the following to cm^{3}.
a $12 \mathrm{~m}^{3}$
b $100 \mathrm{~m}^{3}$
(3) Convert each of the following to m^{3}.
a $60000 \mathrm{~cm}^{3}$
b $750000 \mathrm{~cm}^{3}$
(4) Convert each of the following to cm^{3}.
a 45 ml
b 12 ml
c $2.3 l$
d $1.8 l$
e $4.8 \mathrm{~m}^{3}$
f $\quad 5.3 \mathrm{~m}^{3}$
g $7.4 \mathrm{~m}^{3}$
(5) Convert each of the following to m^{3}.
a $280 \mathrm{~cm}^{3}$
(b) $75.3 \mathrm{~cm}^{3}$
C $3.8 l$
d $7.2 l$
(6) Convert the following to l.
a $2 \mathrm{~m}^{3}$
(b) $8.5 \mathrm{~m}^{3}$
C $\quad 2.8 \mathrm{~m}^{3}$

Context-Based Questions

(7) The standard Olympic pool has a length 50 m and breadth 25 m with a depth of 2 m . Find the volume of the pool in
a m^{3}
b cm^{3}
c l
(3) Waleed argues that $2.5 \mathrm{~m}^{3}$ equals $250 \mathrm{~cm}^{3}$. Do you agree? Explain.

Volume of Cubes and Cuboids

A cube is a three-dimensional solid whose sides are perpendicular to one another. The edges of a cube are equal. All the edges of the cube have the same length, l.

A cuboid has sides which are perpendicular to one another. However, its edges may not be equal. A cuboid has length, l, breadth, b and height, h.

The volume of a solid, cube or cuboid measures the amount of space inside it.

Volume of a Cube

Consider a cube of length 2 cm . How many cubes of length 1 cm are needed to fill it up?

By dividing the big cube into small cubes of $1 \mathrm{~cm}^{3}$, we can see that we need 8 cubes of length 1 cm to fill up the big cube shown.

Therefore,

$$
\begin{aligned}
\text { Volume } & =8 \times 1 \mathrm{~cm}^{3} \\
& =8 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\text { Alternatively, Volume }=l \times l \times l
$$

$$
\begin{aligned}
& =2 \mathrm{~cm} \times 2 \mathrm{~cm} \times 2 \mathrm{~cm} \\
& =8 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of cube $=$ length \times length \times length

$$
\begin{aligned}
& =1 \times 1 \times 1 \\
& =1^{3}
\end{aligned}
$$

Example 7

The solid is made up of 27 cubes of length 1 cm .
Find the volume of the solid.

Solution:

Method 1
Volume of one cube of length 1 cm
$=1 \mathrm{~cm}^{3}$
Volume of 27 cubes of length 1 cm
$=27 \times 1 \mathrm{~cm}^{3}$
$=27 \mathrm{~cm}^{3}$

Method 2

$$
\begin{aligned}
\text { Volume of solid } & =3 \mathrm{~cm} \times 3 \mathrm{~cm} \times 3 \mathrm{~cm} \\
& =27 \mathrm{~cm}^{3}
\end{aligned}
$$

The volume of the solid is $27 \mathrm{~cm}^{3}$.

Volume of a Cuboid

Consider a cuboid 4 cm by 3 cm by 2 cm . To calculate its volume, we try to pack it with cubes of length 1 cm .

Find the number of cubes of sides 1 cm that can fill up the cuboid. Convince yourself that the volume of the cuboid is $24 \mathrm{~cm}^{3}$.

In general, for a cuboid with length I, breadth b and height h, what is its volume?

Check that the formula can be applied to the above cuboid.

Example 8

Find the volume of the gift box which is 12 cm long, 8 cm wide and 5 cm tall.

Solution: Volume of the box $=$ length \times breadth \times height

$$
\begin{aligned}
& =12 \mathrm{~cm} \times 8 \mathrm{~cm} \times 5 \mathrm{~cm} \\
& =480 \mathrm{~cm}^{3}
\end{aligned}
$$

The volume of the gift box is $480 \mathrm{~cm}^{3}$.

Z Try!

If the cuboid on the right is 18 mm long, 3 mm wide and 4 mm tall, find its volume.

Practice 11D

Concept-Building Questions

(1) Find the volume of a cube of length 12 cm .

(2) Find the missing numbers.
a

b

c

d

(3) Find the volume of each rectangular box with the following dimensions.
a $l=3 \mathrm{~cm}, b=2.5 \mathrm{~cm}, h=1.5 \mathrm{~cm}$
b $l=8 \mathrm{~cm}, b=5 \mathrm{~cm}, h=3.5 \mathrm{~cm}$

Context-Based Questions

(4) A fish tank has length 1.2 m , width 80 cm and height 50 cm .

Find the capacity of the tank. Give your answer in
a cm^{3}
b m^{3}
(5) A cardboard box has length 28 cm , width 10 cm and height 12 cm .

a Find the volume of the cardboard box.
b How many cubes of length 1 cm can be put inside the cardboard box?
c How many cubes of length 2 cm can be put inside the cardboard box?
d Felix wants to find out the maximum number of cubes of length 3 cm that can be put inside the cardboard box. He calculated the answer this way.
$(28 \times 10 \times 12) \div(3 \times 3 \times 3)=124.4$
He then concluded that the maximum number of cubes is 124. Critique his solution and answer.

Nets of a Cube

Each set of squares shown can be folded into a cube. These two figures are nets of a cube.

Nets of a Cuboid

The following sets of rectangles, when folded, can form a cuboid. They are nets of a cuboid.

To find the surface area of a cube or cuboid, first find the area of each of its faces, then sum them up. A net helps us to identify all the faces of a cube or cuboid.

Find the surface area of the cube in two ways. 8 Critique the methods. Explain.

Solution: The cube has 6 square faces.
Area of each square $=3 \mathrm{~cm} \times 3 \mathrm{~cm}$

$$
=9 \mathrm{~cm}^{2}
$$

Area of 6 square faces $=6 \times 9 \mathrm{~cm}^{2}$

$$
=54 \mathrm{~cm}^{2}
$$

The surface area of the cube is $54 \mathrm{~cm}^{2}$.
The surface area of the cube is the same as the area of its net. We can also use the net of the cube to find the surface area of the cube.

A possible net of the cube is as shown.

Method 1

We can break up the net into two rectangles.
Area of green rectangle $=3 \mathrm{~cm} \times 9 \mathrm{~cm}$

$$
=27 \mathrm{~cm}^{2}
$$

Area of yellow rectangle $=3 \mathrm{~cm} \times 9 \mathrm{~cm}$

Surface area of cube $=$ area of 2 rectangles

$$
\begin{aligned}
& =27 \mathrm{~cm}^{2}+27 \mathrm{~cm}^{2} \\
& =54 \mathrm{~cm}^{2}
\end{aligned}
$$

Method 2

Surface area of cube = sum of area of 6 squares

$$
=54 \mathrm{~cm}^{2}
$$

$=27 \mathrm{~cm}^{2}$

$$
=6 \times 9 \mathrm{~cm}^{2}
$$

Method 1 breaks up the net of a cube into 2 rectangles while Method 2 uses the number of square faces in the cube to calculate the surface area. Method 2 is more direct.

$\sum_{\text {Try! }}^{\text {faces }}$Find the total surface area of the cube.

¿ m OS」

Example 10

Find the total surface area of a cuboid 2 cm by 3 cm by 4 cm .

Solution: The net of the cuboid is as shown.

Area of 2 green rectangles $=2 \times 3 \mathrm{~cm} \times 4 \mathrm{~cm}$

$$
=24 \mathrm{~cm}^{2}
$$

Area of 2 yellow rectangles $=2 \times 2 \mathrm{~cm} \times 4 \mathrm{~cm}$

$$
=16 \mathrm{~cm}^{2}
$$

Area of 2 blue rectangles $=2 \times 2 \mathrm{~cm} \times 3 \mathrm{~cm}$

$$
=12 \mathrm{~cm}^{2}
$$

Total surface area $=24 \mathrm{~cm}^{2}+16 \mathrm{~cm}^{2}+12 \mathrm{~cm}^{2}$

$$
=52 \mathrm{~cm}^{2}
$$

$\sum_{T r y!}$Find the surface area of the matchbox.

¿யว 8ะ

Practice 11E

Concept-Building Questions

(1) Find the total surface area of the following cubes.
a

b

(2) Find the total surface area of the following cuboids.
a

b

c

Context-Based Questions

(3) Ramli is hired to paint the outer surface of a cuboid with dimensions 2 m by 3 m by 5 m . He is paid $\$ 5$ for every $1 \mathrm{~m}^{2}$ he paints. How much will he be paid for painting the cuboid?
(4) The surface area of a cube is $24 \mathrm{~cm}^{2}$. Find the length of the cube.

YOU WILL LEARN TO

Volume and

 Surface Area of Compound Shapes- find the volume and surface area of compound shapes

Example 11

The diagram shows a solid made up of two cubes. Do you think the volume of the solid is the sum of the volume of the two cubes? What about the surface area?

Find the volume and total surface area of the compound shape, which consists of 3 cubes put together.

Solution: Volume of the compound shape $=3 \times$ volume of one cube

$$
\begin{aligned}
& =3 \times(10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}) \\
& =3 \times 1000 \mathrm{~cm}^{3} \\
& =3000 \mathrm{~cm}^{3}
\end{aligned}
$$

Number of square faces making
up the compound shape $=2 \times(3+2+2)$

$$
=14
$$

Area of 1 square face $=10 \mathrm{~cm} \times 10 \mathrm{~cm}$

$$
\begin{aligned}
& =100 \mathrm{~cm}^{2} \\
\text { Total surface area } & =14 \times 100 \mathrm{~cm}^{2} \\
& =1400 \mathrm{~cm}^{2}
\end{aligned}
$$

$Y_{T r y!}$

 Find the volume and total surface area of the compound shape.

Example 12

Find the volume and surface area of the solid.

Solution: Volume $=[(15 \times 15 \times 10)+(5 \times 5 \times 5)] \mathrm{cm}^{3}$

$$
\begin{aligned}
& =(2250+125) \mathrm{cm}^{3} \\
& =2375 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
\text { Total surface area } & =[(15 \times 10 \times 4)+(15 \times 15 \times 2)+(5 \times 5 \times 4)] \mathrm{cm}^{2} \\
& =1150 \mathrm{~cm}^{2}
\end{aligned}
$$

Find the volume and surface area of the solid.

Practice 11F

Look at the figure.
a Ruhie says, "Since the surface area of a small cube is $6 \mathrm{~cm}^{2}$, the total surface area of the figure is $6 \times 14 \mathrm{~cm}^{2}$." Is Ruhie correct? Explain.
b Raj says, "Since the volume of a small cube is $1 \mathrm{~cm}^{3}$, the total volume of the figure is $14 \times 1 \mathrm{~cm}^{3}$." Is Raj correct? Explain.

2 Find the volume and surface area of the following compound solids which are made up of cubes of length 1 cm .
a

b

c

3 For each of the following solids, find its volume and surface area.
a

b

d

a What is the total surface area painted?
b When the cube is dismantled, how many 1 -cm cubes are not painted on any sides?

Performance Task

Look for objects in the shape of cubes and cuboids. Draw or take a picture of each object you found. Find their volume and surface area. Draw a scale drawing of their net.

Write down your working and answers clearly and use the scoring rubric to guide you.

Scoring Rubric

Task	Level: 1 (Score 1 point)	Level 2 (Score 2 points)	Level 3 (Score 3 points)	Level 4 (Score 4 points)
How many objects did I find?	I found only one object that looks like a cube.	I found one object that looks like a cube and one that looks like a cuboid.	I found one object that looks like a cube and two objects that look like a cuboid.	I found two objects that look like a cube and two objects that look like a cuboid.
Finding volume and surface area (Score only when at least three objects are found.)	I could find either the volume or surface area but not both.	I could find the volume and surface area but with major inaccuracies.	I could find both the volume and surface area but with minor inaccuracies.	I could find both the volume and surface area accurately.
Drawing nets (Score only when at least three objects are found.)	I could draw the net but not according to scale.	I could draw the net according to my scale but it is not accurate.	I could draw the net according to my scale but with minor inaccuracies.	I could draw the net accurately according to my scale.

Chapter 11 Key Ideas Measurement of 2D and 3D Shapes

Area

Standard units are $\mathrm{cm}^{2}, \mathrm{~m}^{2}, \mathrm{~km}^{2}, \mathrm{~mm}^{2}$

$$
\begin{array}{ll}
1 \mathrm{~m}^{2}=10000 \mathrm{~cm}^{2} & 1 \mathrm{~cm}^{2}=\frac{1}{10000} \mathrm{~m}^{2} \\
1 \mathrm{~km}^{2}=1000000 \mathrm{~m}^{2} & 1 \mathrm{~m}^{2}=\frac{1}{1000000} \mathrm{~km}^{2} \\
1 \mathrm{ha}=10000 \mathrm{~m}^{2} & 1 \mathrm{~m}^{2}=\frac{1}{10000} \mathrm{ha} \\
1 \mathrm{~cm}^{2}=100 \mathrm{~mm}^{2} & 1 \mathrm{~mm}^{2}=\frac{1}{100} \mathrm{~cm}^{2}
\end{array}
$$

Area of triangle $=\frac{1}{2} \times b \times h$

Volume is the amount of space inside a solid.

Standard units of volume
$1 \mathrm{~m}^{3}=1000000 \mathrm{~cm}^{3}$
$1 \mathrm{~cm}^{3}=\frac{1}{1000000} \mathrm{~m}^{3}$
$1 \mathrm{ml}=1 \mathrm{~cm}^{3}$
$1 l=1000 \mathrm{ml}=1000 \mathrm{~cm}^{3}$

Volume of cube $=1 \times 1 \times 1$

1

Volume of cuboid $=1 \times b \times h$

3D Solids

(a) with curved surface

(b) without curved surface

Surface Area can be visualised using net figures.

Total surface area of cube

$=6 \times 1 \times 1$

Total surface area of cuboid

$=2[(l \times b+l \times h+b \times h)]$

Chapter 11 Revision

(1) Convert each of the following to cm^{2}.
a $0.4 \mathrm{~m}^{2}$
(b) $3 \mathrm{~m}^{2}$
C $1.56 \mathrm{~m}^{2}$
(2) Convert each of the following to m^{2}.
a $3000 \mathrm{~cm}^{2}$
(b) $40 \mathrm{~cm}^{2}$
C $600000 \mathrm{~cm}^{2}$
(3) Convert each of the following to m^{2}.
a $2.5 \mathrm{~km}^{2}$
(b) $0.5 \mathrm{~km}^{2}$
C $12.2 \mathrm{~km}^{2}$
(4) Convert each of the following to km^{2}.
a $6000000 \mathrm{~m}^{2}$
(b) $750000 \mathrm{~m}^{2}$
(5) Convert each of the following to mm^{2}.
a $42 \mathrm{~cm}^{2}$
(b) $3.8 \mathrm{~cm}^{2}$
(6) Convert each of the following to cm^{2}.
a $120 \mathrm{~mm}^{2}$
(b) $48 \mathrm{~mm}^{2}$
(7) Convert each of the following to m^{2}.
a 2.4 ha
(b) 0.56 ha
(8) Convert each of the following to ha.
a $13000 \mathrm{~m}^{2}$
(b) $412000 \mathrm{~m}^{2}$
(9) Find the area of each of the following triangles.
a

(b)

C

(10) Find the area of each of the following figures.
a

(b)

C

(11) a Convert each of the following to cm^{3}.
(i) $5 \mathrm{~m}^{3}$
(ii) $0.006 \mathrm{~m}^{3}$
(b) Convert each of the following to m^{3}.
(i) $76000 \mathrm{~cm}^{3}$
(ii) $250000 \mathrm{~cm}^{3}$
(ii) $3 \mathrm{~cm}^{3}$
(12) Convert each of the following to cm^{3}.
(a) 2.51
(b) $0.52 l$
C 68 ml
d 120 ml
(13) Find the number of faces, vertices and edges of the following solids.
(

(b)

c

(14) Find the volume and surface area of the following cubes and cuboids.

(b)

(15) Find the volume and surface area of the following compound solids which are made up of cubes of length 1 cm .

(16) Find the volume and surface area of the following solids.

Use the following self-assessment checklist to see if you have understood the concepts.

Objectives

1 Convert between m^{2} and cm^{2}

2 Convert between km^{2} and m^{2}

3 Convert between cm^{2} and mm^{2}

4 Convert between m^{2} and ha
(5) Calculate area of triangles

6 Calculate area of compound shapes

7 Convert between $\mathrm{cm}^{3}, \mathrm{~m}^{3}, \mathrm{~m} l$ and l

8 Find the faces, vertices and edges of 3D shapes

9 Find the volumes and surface areas of cubes, cuboids and compound shapes

Questions

1a, b, c
2a, b, c

3a, b, c
4a, b
Score

7a, b
$8 a, b$

9a, b, c

10a, b, c, d
4

11a (i), (ii); b (i), (ii), (iii) 12a, b, c, d

13a, b, c
3
$14 a, b$
$15 a, b, c$
$16 a, b$

Total

